Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema
Öztürk, ${ }^{\text {a } *}$ Muhíttín Aygün ${ }^{\text {b }}$ and Feray Aydog̃an ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, 33150, Buca Ízmir, Turkey, and ${ }^{\text {c Department of }}$ Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, 80270 Ístanbul, Turkey

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.073$
$w R$ factor $=0.187$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4,6-Dimethyl-2-(o-tolyliminomethyl)quinoline

The molecule of the title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}$, is not planar. The dihedral angle between the quinoline and phenyl rings is 118.5 (1) ${ }^{\circ}$.

Received 18 April 2001 Accepted 20 April 2001 Online 30 April 2001

Comment

Interest in quinoxaline derivatives has increased greatly during recent years due to their different applications in various areas. Some derivatives are used as colorimetric agents (Campaigne \& McLaughlin, 1983), antibacterial agents (Boutti \& Lecolier, 1976) and colouring matter. Other derivatives possess various biological activities (De Clercq, 1998; Li et al., 1997). Much attention has recently been concentrated on compounds obtained from heterocyclic carbaldehydes for the treatment of cancer (Kouznetsov et al., 1998; Öcal \& Kaban, 1998). The structure of 4,6-dimethyl-2-(o-tolyliminomethyl)quinoline, (I), has been determined and is presented here.

(I)

The quinoline and phenyl rings are planar. In the quinoline ring, the angle $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ is greater than 120° [123.4 (2) ${ }^{\circ}$] and the angle $\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$ is smaller than 120° [118.2 (2) ${ }^{\circ}$] (Öztürk et al., 2000). The dihedral angle between the leastsquares planes of the quinoline and phenyl rings is $118.5(1)^{\circ}$.

Experimental

The title compound was synthesized by the condensation of 4,6-di-methylquinoline-2-carbaldehyde with o-toluidine in dry ethanol for 6.5 h . Light-yellow crystals were obtained after crystallization from ethanol. Yield: 54%; m.p.: 392 K; IR (KBr): $\gamma 3040,2890,1585 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta, 200 \mathrm{MHz}\right): 2.46\left(3 \mathrm{H}, s, o-\mathrm{CH}_{3}\right), 2.59(3 \mathrm{H}, s$, $\left.6-\mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, s, 4-\mathrm{CH}_{3}\right), 7.05-8.64(9 \mathrm{H}, m$, ArH and CH$)$ p.p.m.; UV $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }} 260.8,312.5 \mathrm{~nm}$. Elemental analysis, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires: C 83.18, H 6.61, N 10.21%; found: C 83.14, H 6.58, N 10.11% (Aydog̃an, 1993).

Figure 1
An ORTEPII drawing of the molecular structure of (I) showing the labelling of the non-H atoms. Anisotropic displacement ellipsoids are shown at the 50% probability level.

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2}$
$M_{r}=274.37$
Triclinic, $P \overline{1}$
$a=7.5693(7) \AA$
$b=9.5620(9) \AA$
$c=11.3908(11) \AA$
$\alpha=79.203(2)^{\circ}$
$\beta=76.735(2)^{\circ}$
$\gamma=77.514(2)^{\circ}$
$V=775.19(13) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.180 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1739 \\
& \quad \text { reflections } \\
& \theta=3.1-27.5^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.44 \times 0.26 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART 1000 CCD area-
detector diffractometer ω scans
5000 measured reflections
3414 independent reflections
1697 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.236$
$S=1.02$
3414 reflections
194 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.316(3)$	$\mathrm{C} 3-\mathrm{C} 10$	$1.496(4)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.364(3)$	$\mathrm{C} 6-\mathrm{C} 11$	$1.515(4)$
$\mathrm{N} 2-\mathrm{C} 12$	$1.267(3)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.501(4)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.420(3)$		
			$120.2(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9$	$118.0(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 11$	$120.9(3)$
$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 13$	$119.0(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 11$	$118.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	$121.2(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$121.3(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 10$	$121.8(2)$	$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$120.7(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$123.4(2)$	$\mathrm{C} 13-\mathrm{C} 18-\mathrm{C} 19$	
$\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 1$	$-178.6(2)$		

The methyl groups were allowed to rotate about their local threefold axes.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPII (Johnson, 1976).

References

Aydog̃an, F. (1993). MSc Thesis, Yıldız Technical University, Ístanbul, Turkey. Boutti, D. \& Lecolier, X. (1976). French Patent 2, 249, 879 (30 May 1975).
Campaigne, E. \& McLaughlin, A. R. (1983). J. Heterocycl. Chem. 20, 623-628. De Clercq, E. (1998). Antiviral Res. 38, 153-179.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kouznetsov, V., Öcal, N., Turgut, Z., Zubkov, F., Kaban, Ş. \& Varlamov, A. V. (1998). Monatsh. Chem. 129, 671-675.

Li, H., Godfrey, D. A. \& Rubin, A. M. (1997). Neuroscience, 77, 473-484.
Öcal, N. \& Kaban, Ş. (1998). Indian J. Chem. 37, 1051-1056.
Öztürk, S., Aygün, M., Öcal, N., Yolaçan, Ç. \& Fun, H. K. (2000). Z.
Kristallogr. New Cryst. Struct. 215, 526-528.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT (Version 4). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

