organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a Sema Öztürk,^a* Muhíttín Aygün^b and Feray Aydoğan^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, 33150, Buca Ízmir, Turkey, and ^cDepartment of Chemistry, Faculty of Arts and Sciences, Yıldız Technical University, 80270 Ístanbul, Turkey

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.073 wR factor = 0.187 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The molecule of the title compound, $C_{19}H_{18}N_2$, is not planar. The dihedral angle between the quinoline and phenyl rings is 118.5 (1)°.

4,6-Dimethyl-2-(o-tolyliminomethyl)quinoline

Received 18 April 2001 Accepted 20 April 2001 Online 30 April 2001

Comment

Interest in quinoxaline derivatives has increased greatly during recent years due to their different applications in various areas. Some derivatives are used as colorimetric agents (Campaigne & McLaughlin, 1983), antibacterial agents (Boutti & Lecolier, 1976) and colouring matter. Other derivatives possess various biological activities (De Clercq, 1998; Li *et al.*, 1997). Much attention has recently been concentrated on compounds obtained from heterocyclic carbaldehydes for the treatment of cancer (Kouznetsov *et al.*, 1998; Öcal & Kaban, 1998). The structure of 4,6-dimethyl-2-(*o*-tolyliminomethyl)quinoline, (I), has been determined and is presented here.

The quinoline and phenyl rings are planar. In the quinoline ring, the angle C3–C4–C5 is greater than 120° [123.4 (2)°] and the angle C8–C9–N1 is smaller than 120° [118.2 (2)°] (Öztürk *et al.*, 2000). The dihedral angle between the least-squares planes of the quinoline and phenyl rings is 118.5 (1)°.

Experimental

The title compound was synthesized by the condensation of 4,6-dimethylquinoline-2-carbaldehyde with *o*-toluidine in dry ethanol for 6.5 h. Light-yellow crystals were obtained after crystallization from ethanol. Yield: 54%; m.p.: 392 K; IR (KBr): γ 3040, 2890, 1585 cm⁻¹; ¹H NMR (CDCl₃, δ , 200 MHz): 2.46 (3H, *s*, *o*-CH₃), 2.59 (3H, *s*, 6-CH₃), 2.76 (3H, *s*, 4-CH₃), 7.05–8.64 (9H, *m*, ArH and CH) p.p.m.; UV (CHCl₃): λ_{max} 260.8, 312.5 nm. Elemental analysis, C₁₉H₁₈N₂ requires: C 83.18, H 6.61, N 10.21%; found: C 83.14, H 6.58, N 10.11% (Aydoğan, 1993).

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

An *ORTEPII* drawing of the molecular structure of (I) showing the labelling of the non-H atoms. Anisotropic displacement ellipsoids are shown at the 50% probability level.

Crystal data

 $\begin{array}{l} C_{19}H_{18}N_2 \\ M_r = 274.37 \\ \text{Triclinic, } P\overline{1} \\ a = 7.5693 \ (7) \ \text{\AA} \\ b = 9.5620 \ (9) \ \text{\AA} \\ c = 11.3908 \ (11) \ \text{\AA} \\ \alpha = 79.203 \ (2)^\circ \\ \beta = 76.735 \ (2)^\circ \\ \gamma = 77.514 \ (2)^\circ \\ \gamma = 775.19 \ (13) \ \text{\AA}^3 \end{array}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer ω scans 5000 measured reflections 3414 independent reflections 1697 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.236$ S = 1.023414 reflections 194 parameters H-atom parameters constrained Z = 2 $D_x = 1.180 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1739 reflections $\theta = 3.1-27.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 (2) KNeedle, colourless $0.44 \times 0.26 \times 0.06 \text{ mm}$

 $\begin{aligned} R_{\text{int}} &= 0.035\\ \theta_{\text{max}} &= 27.5^{\circ}\\ h &= -9 \rightarrow 9\\ k &= -12 \rightarrow 12\\ l &= -14 \rightarrow 14 \end{aligned}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.1124P)^2 \\ &+ 0.0410P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.24 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.27 \text{ e } \text{\AA}^{-3} \\ \text{Extinction correction: } SHELXL93 \\ \text{Extinction coefficient: } 0.023 (9) \end{split}$$

Table 1		
Selected geometric parameters	(Å.	°)

N1-C1	1.316 (3)	C3-C10	1.496 (4)
N1-C9	1.364 (3)	C6-C11	1.515 (4)
N2-C12	1.267 (3)	C18-C19	1.501 (4)
N2-C13	1.420 (3)		
C1 - N1 - C9	1180(2)	C5 - C6 - C11	120.2 (3)
C12-N2-C13	119.0(2)	C7-C6-C11	120.9 (3)
C2-C3-C10	121.2 (2)	N1-C9-C8	118.2 (2)
C4-C3-C10	121.8 (2)	C17-C18-C19	121.3 (3)
C5-C4-C3	123.4 (2)	C13-C18-C19	120.7 (3)
C13-N2-C12-C1	-178.6 (2)		

The methyl groups were allowed to rotate about their local threefold axes.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993); molecular graphics: *ORTEPII* (Johnson, 1976).

References

Aydoğan, F. (1993). MSc Thesis, Yıldız Technical University, İstanbul, Turkey. Boutti, D. & Lecolier, X. (1976). French Patent 2, 249, 879 (30 May 1975). Campaigne, E. & McLaughlin, A. R. (1983). *J. Heterocycl. Chem.* **20**, 623–628. De Clercq, E. (1998). *Antiviral Res.* **38**, 153–179.

Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kouznetsov, V., Öcal, N., Turgut, Z., Zubkov, F., Kaban, Ş. & Varlamov, A. V. (1998). Monatsh. Chem. 129, 671–675.

Li, H., Godfrey, D. A. & Rubin, A. M. (1997). Neuroscience, 77, 473-484.

- Öcal, N. & Kaban, Ş. (1998). Indian J. Chem. 37, 1051–1056.
- Öztürk, S., Aygün, M., Öcal, N., Yolaçan, Ç. & Fun, H. K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 526–528.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
- Siemens (1996). *SMART* and *SAINT* (Version 4). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.